An Increase in CD3+CD4+CD25+ Regulatory T Cells after Administration of Umbilical Cord-Derived Mesenchymal Stem Cells during Sepsis
نویسندگان
چکیده
Sepsis remains an important cause of death worldwide, and vigorous immune responses during sepsis could be beneficial for bacterial clearance but at the price of collateral damage to self tissues. Mesenchymal stem cells (MSCs) have been found to modulate the immune system and attenuate sepsis. In the present study, MSCs derived from bone marrow and umbilical cord were used and compared. With a cecal ligation and puncture (CLP) model, the mechanisms of MSC-mediated immunoregulation during sepsis were studied by determining the changes of circulating inflammation-associated cytokine profiles and peripheral blood mononuclear cells 18 hours after CLP-induced sepsis. In vitro, bone marrow-derived MSCs (BMMSCs) and umbilical cord-derived MSCs (UCMSCs) showed a similar morphology and surface marker expression. UCMSCs had stronger potential for osteogenesis but lower for adipogenesis than BMMSCs. Compared with rats receiving PBS only after CLP, the percentage of circulating CD3+CD4+CD25+ regulatory T (Treg) cells and the ratio of Treg cells/T cells were elevated significantly in rats receiving MSCs. Further experiment regarding Treg cell function demonstrated that the immunosuppressive capacity of Treg cells from rats with CLP-induced sepsis was decreased, but could be restored by administration of MSCs. Compared with rats receiving PBS only after CLP, serum levels of interleukin-6 and tumor necrosis factor-α were significantly lower in rats receiving MSCs after CLP. There were no differences between BMMSCs and UCMSCs. In summary, this work provides the first in vivo evidence that administering BMMSCs or UCMSCs to rats with CLP-induced sepsis could increase circulating CD3+CD4+CD25+ Treg cells and Treg cells/T cells ratio, enhance Treg cell suppressive function, and decrease serum levels of interleukin-6 and tumor necrosis factor-α, suggesting the immunomodulatory association of Treg cells and MSCs during sepsis.
منابع مشابه
Induction of T Regulatory Subsets from Naïve CD4+ T Cells after Exposure to Breast Cancer Adipose Derived Stem Cells
Background: Adipose derived stem cells (ASCs) provoke the accumulation and expansion of regulatory T cells, leading to the modulation of immune responses in tumor microenvironment. Objective: To assess the effect of tumoral ASCs on the trend of regulatory T cells differentiation. Methods: Peripheral blood naïve CD4+ T cells were co-cultured with ASCs derived from breast cancer or normal breast ...
متن کاملA New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells
Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...
متن کاملNumerical status of CD4+CD25+FoxP3+ and CD8+CD28- regulatory T cells in multiple sclerosis
Objective(s): Regulatory T cells, including CD4+CD25+Fox3+ and CD8+CD28- cells play an important role in regulating the balance between immunity and tolerance. Since multiple sclerosis is an inflammatory autoimmune disease, regulatory T cells are considered to be involved in its pathogenesis. In this study, we investigated the circulatory numbers of the two mentioned types of regulatory T cells...
متن کاملPlatelet-derived Microparticles increase the Expression of hTERT Gene in Umbilical Cord Mesenchymal Stem Cells
Background: Mesenchymal stem cells have been widely considered in clinical researches because of their self-renewality and differentiation into various tissues. Nevertheless, their limited in vitro life span, which occurs only after several divisions, makes some changes in these cells, which affects all of their characteristics and remarkably reduces their application. In this study, the effect...
متن کاملPlatelet Rich in Growth Factors (PRGF): A Suitable Replacement for Fetal Bovine Serum (FBS) in Mesenchymal Stem Cell Culture
Background: Due to high differentiation potential and self-renewality, Mesenchymal Stem Cells are now widely considered by researchers in several diseases. FBS is used as a supplement in culture media for proliferation, differentiation, and other culture processes of MSCs, which is associated with transmission risk of a variety of infections as well as immune responses. PRGF derived from platel...
متن کامل